
Optimizing Training Cost for Scalable Graph Processing
Han Hoang1Joshua Li1 (Mentor) Lindsey Kostas2 (Mentor) Dhiman Sengupta2

gihoang@ucsd.edu jol029@ucsd.edu lkostas@qti.qualcomm.com dhimseng@qti.qualcomm.com

1UCSD 2Qualcomm

Introduction

Unlike traditional place-and-route (PnR) methods, which iteratively refine lay-
outs, data-driven chip design optimization leverages machine learning to ad-
dress congestion more efficiently by predicting resource bottlenecks early and
guiding design decisions to reduce costly iterations. Central to this approach
is the netlist, a hypergraph representation of a circuit’s connectivity, where
nodes represent components (e.g., logic gates) and hyperedges represent elec-
trical connections. By analyzing and optimizing resource demand through the
netlist, this method directly enhances floorplanning—the process of arranging
components on a 2D chip canvas—by providing insights that minimize con-
gestion while optimizing Power, Performance, and Area (PPA) and meeting
design constraints.

DE-HNN [1] is a state-of-the-art hypergraph neural network designed to pre-
dict congestion in chip design via demand regression. It outperforms other
models by effectively capturing long-range dependencies through hierarchical
virtual nodes, which aggregate node features within partitioned graph neigh-
borhoods and propagate information efficiently, enabling more robust predic-
tions.

Figure 1. Illustration of DE-HNN Model Architecture

Research Motivation: While DEHNN delivers high performance, its scalabil-
ity and practicality are limited by its significant computational overhead and
lengthy runtimes.

Objective

This project aims to minimize training costs in terms of runtime and mem-
ory, while preserving model performance as much as possible. It focuses on
identifying cost-accuracy trade-offs and developing a model architecture and
training process that balance computational efficiency with performance.

Results (1)

Table 1. Reduction in Training Cost and MSE from Training Adjustments

Adjustments Node Loss Net Loss Runtime Memory

ESa 4.9% 3.17% 84.37% 0%

ESa+ AAb 11.27% 3.65% 77.19% 38.83%

ESa+ AAb+ DLRc 6.4% -17.6% 89.32% 38.83%

* Comparison is based against the baseline metrics
a Early Stopping
b Architecture Adjustment (Grid Search: 4 layers, 8 dimensions)
cDynamic Learning Rate (Cyclical Learning Rate)

Conclusion

Our results demonstrate that DE-HNN is a highly expressive model with a fast
convergence rate. We optimized DE-HNN to achieve maximum performance
with minimal training using a simplified configuration (4 layers, 8 dimensions),
coupledwith Cyclical Learning Rate scheduling and our custom Early Stopping
condition.

It has less than a 6% average performance drop with as few as 11 training
iterations, while achieving significant improvement in both runtime (89.32%)
and memory (38.83%), compared to the baseline.

DE-HNN performs better on the test set with fewer training iterations.

Simpler configurations (e.g., 4 layers, 8 dimensions) outperform more
complex ones (e.g., 4 layers, 32 dimensions).

While simpler models require slightly more iterations to converge, they
are more efficient in runtime and memory, since the additional amount
of training iterations is negligible.

Cyclical Learning Rate accelerates convergence, allowing the Early
Stopping condition to terminate training even earlier.

Results (2)

Figure 2. Loss Curves: Baseline with Early Stop vs. Optimized Model

Baseline: 3 layers, 32 dimensions, no Early Stop
Grid Search Optimized Model: 4 layers, 8 dimensions, with Early Stop and Dynamic Learning Rate

Grid Search Results (with Early Stop): Reduction From Baseline (in %)

Figure 3. Reduction in Training Time (in Minutes) Figure 4. Reduction in Memory Usage (in MBs) Figure 5. Early Stop Epoch

Figure 6. Reduction in Validation Node MSE Figure 7. Reduction in Validation Net MSE Figure 8. Average Reduction in Performance

Figure 9. Average Reduction in All Metrics

Figure 10. Loss Curves: Grid Search Optimized Model

Grid Search Optimized Model: 4 layers, 8 dimensions, with Early Stop

Methodology

Environment Setup: All experiments were conducted on a UCSD DSMLP
cloud system with NVIDIA RTX A5000 GPU (24 GB VRAM), using PyTorch
2.2.2 and CUDA 12.2.

Dataset Description: The training dataset includes netlists [1-5], while netlist
6 is used for validation and testing. The netlists vary in the number of nodes,
nets (hyperedges), and edges (connections between nodes and nets). Each
netlist provides structural, spectral, connectivity, and virtual node features as
inputs, with node and net demand as the target variables.

Netlist # Nodes # Nets # Edges

1 797,938 821,523 2,950,019

2 923,355 954,144 3,459,373

3 604,921 627,036 2,358,662

4 671,284 696,983 2,532,180

5 459,495 468,888 1,942,114

6 810,812 830,308 3,107,242

Table 2. Dataset Characteristics

Training and Evaluation Strategy: Minimize mean squared error (MSE) on the
training set for regression. Performance is monitored on the validation set
during training, with final evaluation on the test set to assess generalization
to unseen data.

Optimization Strategy: Apply iterative optimization by first using early stop-
ping, followed by architecture adjustments based on Grid Search, and fi-
nally incorporating a dynamic learning rate, while using a fixed random seed
throughout forweight initialization to ensure reproducibility by controlling the
effects of each optimization component.

Early Stopping (ES): A custom condition using 3 parameters: patience,
tolerance, and min-epochs. Training halts when the validation loss
exceeds a specified range (based on tolerance) around the average loss
of prior epochs (determined by patience). This prevents overfitting while
ensuring training runs for at least min-epochs number of epochs before
the condition can trigger.

Architecture Adjustments (AA): Use Grid search to explore
combinations of two hyperparameters, the number of layers and
dimensions, and identify cost-accuracy trade-offs. Early Stopping is
applied to all Grid Search experiments.

Dynamic Learning Rate (DLR): Use Cyclical Learning Rate (CLR)
scheduler, which adjusts the learning rate cyclically between a minimum
and maximum value to accelerate convergence and avoid local minima.

Baseline Model: The DE-HNN baseline consists of 3 layers with 32 dimen-
sions, a learning rate of 0.001, included virtual nodes, and trained for 100
epochs. It achieved a 133 MSE Node loss, 67.5 MSE Net loss, 5.05 mins
runtime, and 22134 MB in peak memory on the test set.

Discussion

To improve the robustness of our findings, future work could involve apply-
ing the optimization techniques across multiple random seeds and averaging
the results. This approach would help mitigate the variability introduced by
stochastic processes, providing a more reliable evaluation of the optimization
strategies

Acknowledgement

We gratefully acknowledge the invaluable guidance and support of our pri-
mary mentors, Lindsey Kostas and Dhiman Sengupta. We also extend our
thanks to the other mentors in our section for their expertise and assistance:

Alex Hagen (alexhage@qti.qualcomm.com)
Animesh Basak Chowdhury (abasakch@qti.qualcomm.com)
Arnav Ballani (aballani@qti.qualcomm.com)
Elahe Rezaei (erezaei@qti.qualcomm.com)
Masoud Sadeghian (msadeghi@qti.qualcomm.com)

References

[1] Zhishang Luo, Truong Son Hy, Puoya Tabaghi, Donghyeon Koh, Michael Defferrard, Elahe Rezaei, Ryan Carey,

Rhett Davis, Rajeev Jain, and Yusu Wang. DE-HNN: An effective neural model for Circuit Netlist representation.

arXiv preprint arXiv:2404.00477, 2024.

https://okinahiru.github.io/website/

	References

